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DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE 
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Summary 

An earlier theory of the kinetics of pore gradient electrophoresis has been 
extended and generalized to include diffusion broadening of peaks. If D and 
DO represent the diffusion coefficient of a molecular species in the gel and in 
the absence of a gel, respectively, and M and MO the respective mobilities, 
and these variable are assumed to  satisfy 

DID0 = M / M o  = exp ( - z / L )  

where z is distance, then an exact solution is obtained for the resulting 
model. Further, an approximate theory has been developed for the deter- 
mination of diffusion broadening when diffusion coefficient and mobility are 
allowed to have any more general dependence on distance, provided that 
diffusion is a small effect. A comparison of the exact and approximate 
solutions shows that the error due to the approximation is usually smaller 
than measurement error. 

INTRODUCTION 

Rodbard, Kapadia, and Chrambach have recently reviewed the 
theory and presented some relevant experimental information on the 
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218 G. H. WElSS AND D. RODBARD 

use of pore gradient electrophoresis (PGE) for the separation of proteins 
( 1 ) .  The theory presented by these authors assumes that the material 
to be analyaed travels through a gel gradient that is not necessarily 
linear, but that diffusion can be neglected entirely. Some brief remarks 
on diffusion in PGE were made in an appendix of Ref. 1 , but a solution 
to the underlying equations was not given, making it difficult to assess 
quantitative effects of diffusion. Since resolution depends both on 
position and peak dispersion (bandwidth) , it is obviously desireable to 
have either an exact solution to the underlying equations or some 
approximate means of calculating bandwidth as is available for many 
systems in chromatography (8)  and ultracentrifugation (3). 

The purpose of this paper is twofold: (a) to derive an exact expression 
for the development of the molecular distribution in a linear gel gradient 
under the assumption that the gradient affects the diffusion coefficient 
exactly as it does the mobility, and (b) to present a modification of an 
approximate theory previously developed for ultracentrifugation ( 4 )  
which can describe the effects of diffusion in a more general case. 

EXACT ANALYSIS 

In  this section we present an exact analysis of a particular model for 
mobility and diffusion dependence on gradient parameters. The results 
are useful in two respects: The principal assumptions have been verified 
for several systems ( 1 ) ,  and the exact solution can also be used to check 
the approximate theory developed in the next section. The assumptions 
underlying the theory in both this section and the next are: 

(1) The column can be regarded to be one dimensional and infinitely 
long, with space parameter x. 

(2) The gel concentration is a function of x only. 
(3) The voltage gradient within the gel is constant and is unaffected 

(4) Endosmosis, charge effects, and joule heating can be ignored. 
(5) Mobility is a function of gel concentration only and is independent 

(6) The diffusion coefficient is a function of gel concentration only 

(7) The effects of pH or voltage discontinuities in the region of the 

by gel concentration. 

of sample concentration. 

and is independent of sample concentration. 

protein band due to the Donnan effect can be ignored (6). 
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DIFFUSION-DEPENDENT PEAK BROADENING 219 

The assumptions specific to the exact analysis in the next section are: 

(8) Gel concentration is a linear function of x. 
(9) The Ferguson relation applies, so that if M denotes mobility, MO 

the free mobility, T the gel concentration, and KR the retardation 
coefficient, we can write M = MO exp ( - K R T )  (1). 

(10) The diffusioncoefficient satisfies D/Do = M / M o  = exp ( - KRT)  
(67). 

If we denote protein concentration at position x at time t by c(x,t) 
and let v = MV and vo = MoV, be the entrained and free velocities, 
respectively, where Y is the voltage gradient, then Fick's equation can 
be written 

a" = +(.) E) - - a [v(z)c] 
at ax ax 

where v = velocity = mobility X (voltage gradient). We assume that 
the tube is initially loaded with a delta function pulse of concentration q 
so that the initial condition for Eq. (1) is 

C(X,O) = SS(X) (2) 

In  what follows it will prove convenient to work with the normalized 
concentration O(x,t) which also obeys Eq. (1) but with the initial 
condition 

e(s,o) = q ~ )  (3) 
We first discuss the general theory in the absence of diffusion. Then 

the solution to the resulting equation 

can be found by the method of characteristics (8). If we let x = H ( p )  
be the solution to the equation 

[ % = p  

then the general solution can be written (8) , 

( 5 )  
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220 G. H. WElSS AND D. RODBARD 

where e(z,O) is the initial normalized concentration. In  order to appre- 
ciate the significance of this formula, let us asmme the conditions 
appropriate to a linear gel gradient which, together with the Ferguson 
relation, implies that 

M ( z ) .  = Moexp ( - z / L )  (7) 

where L is a parameter that can be determined aa that position at  which 
the mobility falls to e-l = 0.368 of its initial value. For this case 

H ( p )  = Lln(l+?)  

Thus for the initial condition in Eq. (3), i.e., an initial sharp pulse, 
we find 

This represents a pulse located at 

as previously reported in Ref. 1, the pulse being modulated by a linear 
function of time. A somewhat more interesting situation is one in which 
the initial distribution is uniform, 

6(z,O) = 1/L1 for 0 5 z Ll 

= o  otherwise (12) 

that is to say, a finite initial concentration spread over the interval 
(O,L1). This initial distribution becomes 
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DIFFUSION-DEPENDENT PEAK BROADENING 22 1 

where 

Thus the initial distribution has a width LI, and after time t > 0 has 
a width T(t) given by 

Since 

dt 
(I+?) [exp@+?] 

we see that the gel gradient causes the initial bandwidth to decrease 
asymptotically to zero in the absence of diffusion. This result is to be 
expected since the leading edge of the distribution travels more slowly 
than the trailing edge. Furthermore the original flat profile is changed 
to one that has a positive slope between zl*(t) .and zz*(t). 

Let us now consider the effect of diffusion. For the purpose of the 
analysis we use a normalized space variable z = x/Ll and the following 
expression for mobility and diffusion coeEcients 

M = Moexp ( - z ) ,  D = Doexp ( - 2 )  (17) 

If we further define a dimensionless time variable 7 and dimensionless 
diffusion coefficient c by 
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222 G. H. WEISS AND D. RODBARD 

then Fick's equation becomes 

and the initial condition given in Eq. (3) becomes 

e(z,o) = ~ L Z )  

For a representative case we might have 

DO = 2 X lW7cm2/sec 

MO = 1 X 10-6cm2/sec/volt 

in which case e = 2 X 1WS and the r corresponding to 1 = 1 hr is 0.09. 
The range of possible values of e for realistic systems is approximately 
5 X lW4 < e < 5 X 1k2 using polyacrylamide gels ( 1 ) .  

The solution to Eq. (19) under the initial condition of Eq. (3) is 
shown in Appendix A to be 

L = 2cm 

V = 5volts/cm 

in which I(l/r)-~(y) is a Bessel function of the first kind, of imaginary 
argument (9). Since e is generally quite small, both the order and the 
argument of the Bessel function are large, rendering a direct numerical 
calculation of the Bessel function very difficult. However, an asymptotic 
analysis given in full in Appendix B leads to a useful approximation 
that is accurate to within terms of order E. If we define a parameter X by 

= (2/r) exp (z/2), then the expression for protein concentration is 
approximated by 

1 x 1 
e(z,r) = 

~ ~ ( z ~ ~ ) i / 2  (xz + 1)1 /4  (1 + x2)1/2 - 1 

(22) 
Some, typical curves of LB(z,7) calculated for E = 0.001 are shown in 
Fig. '1. The vertical dashed lines indicate the position of the peak pre- 
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DIFFUSION-DEPENDENT PEAK BROADENING 223 

FIQ. 1. Curves of normalized concentration as a function of z, for e = 0.001 and 
several values of dimensionless 2. 

l4 c 

1.4 IS 1.6 1.7 1.8 1.9 2.0 2.1 

FIG. 2. CUNeS of normalized concentration as a function of c, the difbion pmameter, 
for T = 5. 
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224 G. H. WEISS AND D. RODBARD 

dicted by the zero diffusion theory (e = 0). As can be observed from 
the curves, there is no detectable shift due to diffusion. It can be demon- 
strated analytically that the peak occurs at  z* = In (1 + 7 )  correct to 
terms proportional to E .  This is the position predicted by the zero diffu- 
sion theory. Figure 2 shows some typical bands for 7 = 5 for different 
values of e. There is a slight asymmetry around the maximum. 

In Figure 3 we have plotted two curves of the width at  half height 
Wlp as a function of dimensionless time 7. The curves corresponding to 
E = 0.001 and 0.005, respectively, both approach an asymptotic value. 
This behavior is reasonable since the diffusion coefficient Do exp (-2) 

goes to zero as z increases. Even at very early times W l l z ( ~ )  is not 

.I8 
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.I4 
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.I0 

w 1/2 
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.06 

.04 

.02 

0 

€1.005 

2 4 6 8 10 
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FIQ. 3. Curves for Wlla(r), the peak width at half height, as a function of 7 for 
e = 0.001 and 0.005. 
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DIFFUSION-DEPENDENT PEAK BROADENING 225 

proportional to T ~ / ~  as would be characteristic of peak spreading in 
ordinary diffusion. 

APPROXIMATE SOLUTION FOR ARBITRARY MOBILITY AND 
DIFFUSION COEFFICIENT 

Although the solution given in Eq. (21) is a useful one, it depends 
critically on Assumption (10) that mobility and diffusion coefficient are 
influenced in the same way by the gel gradient. It is useful, therefore, to 
have an approximate solution that will allow us to examine the effect 
of different spatial dependence of mobility and diffusion coefficient. The 
theory to follow is closely analogous to that developed by Weiss and 
Dishon (4) for ultracentrifugation. 

Let us begin by defining a dimensionless space variable z = z/L’, 
where L’ can be chosen arbitrarily* but for convenience is chosen so that 
z is a number of the order of unity. Let 

analogous to the variables of the last section. Then Ficks’ equation 
can be written 

We assume that f(z)  and g ( z )  are the order of unity and that E is small 
(again, as in the last section, we assume E < 10-2). As a matter of con- 
venience, and without loss of generality, we definef(z) and g ( z )  so that 
f(0) = g(0) = 1. We also change the space variable 2 so that the origin 
in the new set of coordinates is at the position of the peak predicted by 
the nondiffusion theory. This variable will be denoted by r and is 

so that in the absence of diffusion the peak is specified by r = 0. Let 
the solution to  Eq. (25) for z in t e r m  of 5 and T be denoted by 

* For example, L’ can be the length of the tube, as in Ref. 1. 
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226 G. H. WEISS AND D. RODBARD 

z = H(f + T )  and define 

fW(f + 711 = F ( f +  7 )  

SCH(I + 711 = G ( f +  T )  

$ ( Z , T )  = 6 ( Z , T M Z )  

I n  terms of these variables Eq. (24) becomes an equation for $ ( f , ~ )  , viz. 

This last equation is still exact, no approximations having been made. 
The approximation that we will make to reduce it to a simpler equation 
is to msume that because of the smallness of B ,  only the region of l = 0 
will make an important 
exact equation for $(z ,T)  

. .  

contribution. This amounts to replacing the 
by an equation for an approximate $,,(z,T) : 

That is to say we replace F(f + T )  and G(f + T )  by F ( T )  and G ( T ) ,  
respectively. It can be shown that the neglect of terms in a$/af and $ 
in passing from Eq. (26) to Eq. (27) is of higher order in E than the 
terms retained (4). If we define a new time variable A ( T )  by 

then Eq. (27) becomes 

This equation is the classical diffusion equation, and is to be solved 
subject to the initial condition 

$0 ( Z , O )  = 6 (L'z)g (2) (30) 

when the initial concentration is a delta function pulse. The solution 
to Eq. (29) is (10) 
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DIFFUSION-DEPENDENT PEAK BROADENING 227 

in which the function H ( x )  has been defined above. But the integral is 
easily evaluated because of the delta function, leading to the expression 

Thus the normalized concentration can be approximated by 

Although this expression includes a Gaussian term, the space variable 
appearing in the exponent is 5 rather than z so that the Gaussian term 
is not necessarily symmetric in z. 

In order to derive some of the consequences of Eq. (33), let us consider 
the case characterized by 

f(z) = exp ( - w ) ,  g ( z )  = exp (-2) (34) 

The preceding section was devoted to the case a! = 1. When a! > 1 the 

FIQ. 4. Comparison of the approximate Eq. (22) and exact Eq. (21) concentration 
profiles for = 0.005 and T = 5. 
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228 G. H. WEISS AND D. RODBARD 

rate of diffusion decreases more quickly with the gel gradient than does 
the mobility, while when a < 1 it decreases more slowly. For the choice 
of space dependence in Eq. (34) we find, simply, that 

H(Y) = 1n (1 + Y) (35) 

so that the functions F ( 7 )  and G(7)  that appear in Eq. (28) are F ( 7 )  = 
(1 + 7)- ,  G ( 7 )  = (1 + .)-I. But this leads to the following expression 
for A(?) : 

1 

= In (1 + 7 )  a = 3  

f = exp ( z )  - 1 - T (36) 

The first problem to be considered is the accuracy of the approximation. 
For this purpose we set CY = 1 and compare the approximate LOo(z,r) 
with the more accurate values of LO(z,T) obtained from Eq. (22). 
Figure 4 shows two curves for e = 0.005 and 7 = 5 .  There is a slight 
shift in the peak between the two curves. Accurate calculation shows 
that the difference in z values between the two peaks is 0.0043, so that 
if L = 2 cm the actual peak shift would be less than 0.09 cm out of a 
total distance traveled of 3.6 cm. A more accurate theory can be de- 
veloped to partially compensate for the shift but the resulting expres- 
sions are quite unwieldly, and the error resulting from the use of Eq. 
(33) is probably smaller than experimental error. The relative error 
E ( 2 , ~ )  , defined by 

for e = 0.005 and r = 5 is approximately 4.6% or less except in the tails 
of the curve, where O(z,r) is small in consequence of which relative 
errors tend to be magnified. 

I n  Fig. 5 we have plotted several curves of L00(z,5) for the model 
specified in Eq. (34). The curves given are for e = 0.001 and a = 0.5, 
1, 1.5, 2. The curves are slightly asymmetric, but the asymmetry does 
not appear to depend very strongly on the parameter a. If zm(r) denotes 
the position of the maximum, then it is easy to show from Eq. (33) that 

(38) Zm(7) = 1n (+{I + 7 + [(I + T ) ~  + s e A ( ~ ) ] ” ’ ) )  
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24 
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z 
FIG. 5. A comparison of concentration profiles for the case characterized by 
M = MO exp ( -z), D = Do exp (-a?). The curves given are for E = 0.001 

and 7 = 5, for various values of a. 

This depends only weakly on a through the term 8eA ( 7 )  appearing in 
the square root Both the half-width and the maximum of concentration 
have a significant dependence on a, although it would be very difficult to 
distinguish experimentally between effects that depend on changes in a 
and those that depend on changes in E .  

In future investigations we shall examine the problem of optimizing 
gel gradients for resolution of multicomponent systems. The mathe- 
matical apparatus developed in this paper allows us to consider diffusion 
effects, at least in an approximate way. The errors in the mathematical 
approximation appear to be no greater than experimental error so that 
our theory should be useful in many similar applications in separation 
systems. 

APPENDIX A: SOLUTION TO THE FlCK EQUATION (19) 

In  order to solve Eq. (19), let us first transform the independent and 
dependent variables, z and 0 (z,r) to  y and + (y,~)  by 

Y = exp ( z ) ,  f%r) = Y+(Y,.r) (-4-1) 
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230 G. H. WElSS AND D. RODBARD 

These variables transform Eq. (19) into 

a+ av a+ 
ar ay dY ay2 ay 
- = E? ( y z )  + (E - 1) - = ey- + (2e - 1) - (A-2) 

We next apply a separation of variables to this equation in the form 
+(y,r) = T ( r )  U(y). These functions then satisfy 

(A-3) 

Setting both sides of this equation equal to -A2, we find that 

where J,(x) is a Bessel function of the first kind, of order T and argument 
x (9). Hence a general solution to Eq. (A-2) can be written 

where A (A) is to be determined from the initial condition, i.e., 

This integral equation can be solved by making use of the fact that 
if (10) 

(A-7) 

Equation (A-6) can be put in the form of Eq. (A-7) by settingf(X) = 
A(X)/X. When the initial condition corresponds to an initial pulse at 
x = x', i.e., 

then 
e(z,o)  = G[L(z  - z ' ) ]  (A-9) 

(A-10) 
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DIFFUSION-DEPENDENT PEAK BROADENING 23 1 

where y’ = exp (2’). Combining Eqs. (A-6) through (A-10) we find that 

Therefore the normalized concentration O(z,r) can be written 

in which we have explicitly displayed the dependence on z’. But the 
integral has been evaluated (9), with the result that 

1 et + ez‘ 
ET 

2e1/2 (z+*’) 

X I(1-w (7) (A-13) 

The result corresponding to a pulse at z’ = 0 is O(z,T;O). However, if 
one wishes to discuss a more general initial distribution, say O(z,O) = 
p ( z )  , then the corresponding solution is 

m 

O ( z , T )  = / p(z’ )O(z,T;z’ )  dz‘ (A-14) 
0 

in terms of the solution just derived. 

APPENDIX B: ASYMPTOTIC ANALYSIS OF THE EXACT 
SOLUTION IN EQ. (21) 

We will reduce Eq. (21) by starting with the known properties of 
the Bessel function (9) 
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232 G. H. WElSS AND D. RODBARD 

The Bessel function appearing in Eq. (21) is of the form I(l/+l(X/e) 
where X = (2/7) exp ( 4 2 )  will be considered to be of the order of unity. 
But by'a result of Montroll (11) we can write for small e, 

(e)'/2 ( p  - 1) (:) - [ 7 e.1 

where p = (Az + l ) I i2 .  The combination of Eqs. (B-1) and (B-2) leads 
to the final result given in Eq. (22). One can show that the error terms 
in Montroll's expansion of the Bessel function are negligible. 
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